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Abstract

This paper constructs a model for an orbiting body. This model is of the orbiting body’s
position (relative to the object it’s orbiting) as a function of time. I will construct this model
using Newton’s laws, given an orbiting body’s instantaneous velocity, its position, and the
masses of the two bodies. I will also show how to find the initial measurements needed to
construct the model.

Introduction

In this paper I hope to construct a model of an orbiting body’s1 position as a function of time.
This model is a simple model derived using Newtonian laws and relies on the velocity, position,
and mass of the orbiting body to be known, as well as the mass of the orbited object. The
model relies on the given measurements being known, and therefore fails if we cannot obtain these
measurements. Therefore I will also discuss how to obtain these measurements given other, more
easily obtainable, measurements.

The development of the Newtonian model will require us to solve a second order nonlinear
differential equation. I will ignore the volumes of the orbiting object and orbited object, and thus
also ignore the possibility of a collision. The model will also ignore any movement of the orbited
object, which doesn’t matter much since we only want the relative position of the orbiting object.

1The term orbital bodies only applies to celestial objects in gravitational orbit as far as this paper is concerned.
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Newtonian Model
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Figure 1: Orbiting Body Diagram

Suppose that ms is the mass of an orbited body S, mp is the mass of the corresponding orbiting
body P , and #»r is the position vector of P relative to S (refer to Figure 1). The initial position of
the orbiting body is

#»r (0) = #»r 0,

and the initial velocity is
d #»r

dt
(0) = #»v 0.

We then find that the force exerted on the orbiting body is

mp
d2 #»r

dt2
.

Since this force is the opposing force to gravity (
#»

F g) predicted by Newton’s third law, we find that

mp
d2 #»r

dt2
= − #»

F g

mp
d2 #»r

dt2
= −Gmsmp

| #»r |2
#»r

| #»r |

mp
d2 #»r

dt2
= −Gmsmp

#»r

| #»r |3

d2 #»r

dt2
= −Gms

#»r

| #»r |3
(1)
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Using the traditional physics notation where dx/dt = ẋ and d2x/dt2 = ẍ equation (1) can be
rewritten as

#̈»r = −Gms
#»r

| #»r |3
.

If we let #»r = 〈x, y〉, then we can split equation (1) into to two second order ODEs that do not
contain vectors.

ẍ = − Gmsx

(x2 + y2)3/2

ÿ = − Gmsy

(x2 + y2)3/2

If we let #̇»r =
〈
vx, vy

〉
, so that vx = ẋ and vy = ẏ, then we get the following system of first order

differential equations.

ẋ = vx (2)

v̇x = − Gmsx

(x2 + y2)3/2
(3)

ẏ = vy (4)

v̇y = − Gmsy

(x2 + y2)3/2
(5)

The initial conditions for this system are the components of #»r 0 = 〈x0, y0〉, that is x(0) = x0 and
y(0) = y0, and the components of #»v 0 =

〈
vx0, vy0

〉
, that is vx(0) = vx0 and vy(0) = vy0. This system

can be solved using a numerical solver.

Example: Halley’s Comet

We can use Halley’s Comet to demonstrate how to solve the system of equations (2) through
(5). To do this must first know that the mass of the sun is 1.99 × 1030 kg, the comet’s distance
from the sun at its perihelion2 is 8.78 × 1010m, its speed at the perihelion is 5.46 × 104 m/s, and
the gravitational constant is G = 6.67× 10−11 Nm2/kg2. Note that these measurements where taken
on February 9, 1986.

ẋ = vx

v̇x = −1.33× 1020x

(x2 + y2)3/2

ẏ = vy

2The point at which the comet is closest to the sun.
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v̇y = −1.33× 10[20]y

(x2 + y2)3/2

x(0) = 8.78× 1010

y(0) = 0

vx(0) = 0

vy(0) = 5.46× 104

Using Mathematica we can numerically solve this system, but doing so will not give us equations
for x or y. Instead it only gives us approximate values, which are graphed below.
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Figure 2: Halley’s Comet’s x and y Positions as a Function of Time
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Figure 3: Halley’s Comet’s x and y Velocities as a Function of Time

If we plot the graph of the equations x = x(t), y = y(t), then we can visualize the path Halley’s
Comet takes.
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Figure 4: Halley’s Comet’s Path

Notice that Halley’s Comet follows an elliptical path, as predicted by Kepler’s third law. Notic-
ing that v = | #»v | =

√
v2x + v2y we can also plot the speed of Halley’s Comet as a function of time.
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Figure 5: Halley’s Comet’s Speed

The troughs in the speed occur when the comet is at the aphelion3, and the peaks occur at the
perihelion. The source code for the images is appended to the end of this paper.

It should be noted that this model is not completely accurate. Aside from the fact that the
models are only numerically based, this is because the gravitational effect of the planets, and other
objects, in our solar system causes slight permutations in the orbit of Halley’s comet.

3The point at which the comet is farthest to the sun.
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Initial Conditions

I have gone over the steps to find a function for an orbiting body’s relative position as a function
of time, given the mass of the body it’s orbiting and its instantaneous position and velocity.
However, in real life we would not know these values, and we must therefore devise ways to
calculate them. The position vector can easily be calculated using basic trigonometry, so I will
assume the we have found that value.

Mass of Orbited Object

Unfortunately, for general elliptical orbits the mass of the orbited object and the velocity of
the orbiting object cannot be calculated without knowing the other. If we launch a satellite
into a circular orbit around the orbited object, then the mass calculation becomes a lot more
straightforward. If we let T be the period of the satellite’s orbit and r be its radius of rotation,
then

v =
2πr

T
.

If we let m be the mass of the satellite, then we can find the centripetal force acting on it

Fc = m
v2

r
.

Since the centripetal force is the gravitational force, we find that

Fc = Fg

m
v2

r
=

GMm

r2

M =
v2r

G

M =

(
2πr

T

)2
r

G

M =
4π2r3

GT 2
(6)

Equation (6) gives us the mass of the orbited object in terms of the satellite’s orbital radius and
orbital period, both of which can easily be measured.

As an example let’s calculate the sun’s mass. The Earth has a nearly circular orbit, with an
eccentricity of about 0.017, so we can use it as our satellite. The Earth has a mean orbital radius
of 1.496× 1011m, and an orbital period of 3.156× 107 s. Plugging this data into equation (6) gives
us a mass of 1.988× 1030 kg, which is close to the actual value of 1.989× 1030 kg.
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Velocity of Orbiting Object
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Figure 6: Path of an Orbiting Body

The velocity of the orbiting object is given by equation (7), which is known as the vis-viva
equation.

v2 = GM

(
2

r
− 1

a

)
(7)

For this equation M is the mass of the orbited object, r is the distance from the orbited object to
the orbiting object, and a is the semi-major of the orbiting objects path. It should be noted that
by Kepler’s first law all orbiting objects, in gravitational systems of two objects, follow elliptical
paths. This is why it makes sense to include the semi-major in equation (7).

To derive the vis-viva equation we must assume that the total energy in the system is constant,
which gives us ∑

E = k

K + Ug = k

1

2
mv2 − GMm

r
= k (8)
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If we let subscripts of a denote values at the aphelion and p denote values at the perihelion (see
Figure 6), then we find that

1

2
mv2a −

GMm

ra
=

1

2
mv2p −

GMm

rp
1

2
v2a −

GM

ra
=

1

2
v2p −

GM

rp
(9)

Angular momentum is also conserved, so we find that

La = Lp

rava sin
π

2
= rpvp sin

π

2

vp =
ra
rp
va (10)

Substituting equation (10) into (9) gives us

1

2
v2a −

GM

ra
=

1

2

(
ra
rp
va

)2

− GM

rp

1

2
v2a −

GM

ra
=

r2av
2
a

2r2p
− GM

rp

1

2
v2a

(
1− r2a

r2p

)
=

GM

ra
− GM

rp

1

2
v2a

(
r2p − r2a

r2p

)
= GM

(
rp − ra
rarp

)
1

2
v2a = GM

(
rp

ra(rp + ra)

)

Since ra + rp gives us the length of the major of the path, we know that 2a = ra + rp, and

1

2
v2a = GM

(
2a− ra
2ara

)
(11)

Substituting equation (11) into the left hand side of equation (8) we get

GMm

(
2a− ra
2ara

)
− GMm

ra
= GMm

(
− 1

2a

)
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= −GMm

2a

Since the left hand side of equation (8) is constant, we find that for whatever position the orbiting
object is in the following is true.

1

2
mv2 − GMm

r
= −GMm

2a
1

2
v2 − GM

r
= −GM

2a
1

2
v2 = GM

(
1

r
− 1

2a

)
v2 = GM

(
2

r
− 1

a

)

Thus we have derived the vis-viva equation.

As an example let’s calculate the velocity of Halley’s Comet at its perihelion. The distance
between the comet and the sun at the perihelion is 8.78 × 1010m, and the comet’s semi-major is
2.663×1012m. Using the vis-viva equation we find that v2 = 2.96×109 m2/s2, and v = 5.44×104 m/s.
This result agrees with the more accurate measurement from the Halley’s Comet example.
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Source Code for Images
Halley’s Comet Images

In[1]:= ms = 1.99*^30

Out[1]= 1.99×1030

In[2]:= pd = 8.78*^10

Out[2]= 8.78×1010

In[3]:= pv = 5.46*^4

Out[3]= 54600.

In[4]:= g = 6.67*^-11

Out[4]= 6.67×10-11

In[5]:= ms *g

Out[5]= 1.32733×1020

In[6]:= xSol, ySol, vxSol, vySol = NDSolveValue
x'[t] == vx[t], y'[t] == vy[t], vx'[t]⩵ -(gms x[t])/(x[t]^2+y[t]^2)^(3/2),

vy'[t]⩵ -(gms y[t])/(x[t]^2+y[t]^2)^(3/2), x[0]⩵ pd,
y[0]⩵ 0, vx[0]⩵ 0, vy[0]⩵ pv, {x, y, vx, vy}, {t, 0, 1*^10}

Out[6]= InterpolatingFunction Domain: 0., 1.×1010

Output: scalar
,

InterpolatingFunction Domain: 0., 1.×1010

Output: scalar
,

InterpolatingFunction Domain: 0., 1.×1010

Output: scalar
,

InterpolatingFunction Domain: 0., 1.×1010

Output: scalar


Printed by Wolfram Mathematica Student Edition



In[7]:= posPlt = PlotxSol[t], ySol[t], {t, 0, 1*^10},
AxesLabel→"t (s)", "Comet Position",
PlotLegends→ {"x (m )", "y (m )"}

Out[7]=

2×109 4×109 6×109 8×109 1×1010
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In[8]:= velPlt = PlotvxSol[t], vySol[t], {t, 0, 1*^10},
AxesLabel→"t (s)", "Comet Velocity",
PlotLegends→ {"vx (m /s)", "vy (m /s)"}

Out[8]=
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t (s)

-5000
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In[9]:= xyPlt = ParametricPlot xSol[t], ySol[t], {t, 0, 1*^10},
AxesLabel→ {"x (m )", "y (m )"},
Epilog→

Yellow, PointSize[Large], Point[{0, 0}], Black, Text["Sun", {-4*^11, 0}]

Out[9]=

-6×1012 -5×1012 -4×1012 -3×1012 -2×1012 -1×1012
x (m )
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5×1011

y (m )

Sun

2     halley_comet.nb
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In[10]:= vxvyPlt = PlotSqrtvxSol[t]^2+vySol[t]^2, {t, 0, 1*^10},
AxesLabel→ {"t (s)", "v (m /s)"}

Out[10]=
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In[11]:= Export"posPlt.pdf", posPlt

Out[11]= posPlt.pdf

In[12]:= Export"velPlt.pdf", velPlt

Out[12]= velPlt.pdf

In[13]:= Export"xyPlt.pdf", xyPlt

Out[13]= xyPlt.pdf

In[14]:= Export"vxvyPlt.pdf", vxvyPlt

Out[14]= vxvyPlt.pdf

In[15]:= Export"halley_comet .pdf", EvaluationNotebook[]

halley_comet.nb     3

Printed by Wolfram Mathematica Student Edition


